Socio-ecological connectivity differs in magnitude and direction across urban landscapes

Abstract

Connectivity of social-ecological systems promotes resilience across urban landscapes. Community gardens are social-ecological systems that support food production, social interactions, and biodiversity conservation. We investigate how these hubs of ecosystem services facilitate socio-ecological connectivity and service flows as a network across complex urban landscapes. In three US cities (Baltimore, Chicago, New York City), we use community garden networks as a model system to demonstrate how biophysical and social features of urban landscapes control the pattern and magnitude of ecosystem service flows through these systems. We show that community gardens within a city are connected through biological and social mechanisms, and connectivity levels and spatial arrangement differ across cities. We found that biophysical connectivity was higher than social connectivity in one case study, while they were nearly equal in the other two. This higher social connectivity can be attributed to clustered distributions of gardens within neighborhoods (network modularity), which promotes neighborhood-scale connectivity hotspots, but produces landscape-scale connectivity coldspots. The particular patterns illustrate how urban form and social amenities largely shape ecosystem service flows among garden networks. Such socio-ecological analyses can be applied to enhance and stabilize landscape connectedness to improve life and resilience in cities.

Publication Type
Journal Article
Authors
Monika Egerer, University of California, Santa Cruz
Nakisha Fouch, Clemson University
Elsa C. Anderson, University of Illinois at Chicago
Mysha Clarke, Villanova University
Date
Journal
Scientific Reports
Share

Related Content