Ecosystem ecology: Concepts, data, models

Dr. Whendee Silver
CO$_2$ increase induced stomatal closure and increased surface temperature
Nutrients and water make a difference
Liebig’s Law of the Minimum

Justus von Liebig (1803-1873)

Liebig’s Barrel

Tilman 1999 PNAS
Net carbon balance of an ecosystem
(net ecosystem production = NEP)

\[\text{NEP} = \text{GPP} - \text{R}_{\text{auto}} - \text{R}_{\text{hetero}} \]

Where: GPP is gross photosynthesis
\(\text{R}_{\text{auto}} \) is plant respiration
\(\text{R}_{\text{hetero}} \) is the respiration of heterotrophs

- Carbon dioxide is one resource that plants need to do grow, but not the only resource!
- Nitrogen, water, phosphorus, other nutrients, temperature, physical stability, light….
- Pathogens and disease, herbivory, toxic chemicals, disturbance
Net carbon balance of an ecosystem
(net ecosystem production = NEP)

\[\text{NEP} = \text{GPP} - \text{R}_{\text{auto}} - \text{R}_{\text{hetero}} \]

Where:
- GPP is gross photosynthesis
- \(R_{\text{auto}} \) is plant respiration
- \(R_{\text{hetero}} \) is the respiration of heterotrophs

Carbon dioxide is one resource that plants need to do grow, but not the only resource!

Nitrogen, water, phosphorus, other nutrients, temperature, physical stability, light….

Pathogens and disease, herbivory, toxic chemicals, disturbance

These also affect heterotrophic respiration!
Brienen et al. 2015 Nature

Figure:

(a) Net biomass change (Mg ha\(^{-1}\) yr\(^{-1}\))

Number of plots = 321
Slope = -0.034 Mg ha\(^{-1}\) yr\(^{-2}\)
P = 0.034

(b) Productivity (Mg ha\(^{-1}\) yr\(^{-1}\))

Slope = 0.03 Mg ha\(^{-1}\) yr\(^{-2}\)
P < 0.001

(c) Biomass mortality (Mg ha\(^{-1}\) yr\(^{-1}\))

Slope = 0.051 Mg ha\(^{-1}\) yr\(^{-2}\)
P = 0.001

Year: 1985 to 2010
Nitrogen
Causes of N fixation in the Environment

- Electrical Power Plants (Burning of Fossil Fuels)
- Automobiles (Burning of Fossil Fuels)
- Agriculture (Synthetic Fertilizers & Leguminous Crops)
Humans have doubled the amount of fixed N in the biosphere

Processes/Organisms that fix N:
- Lightening: <3 Tg/yr
- Free-living bacteria: ~44 Tg/yr
- Symbiotic N Fixation: ~100 Tg/yr

Human-doubling of N fixation:
- Fossil Fuel Combustion: ~20 Tg/yr
- Fertilizer production: >80 Tg/yr
- Cultivation of N fixing Row Crops: ~40 Tg/yr

1 Tg = 10^{12} g
Estimated regional and sub-regional annual nitrogen fertilizer consumption 2007 and 2012

<table>
<thead>
<tr>
<th>Regions</th>
<th>Share of world consumption (%)</th>
<th>Annual growth (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>World</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>Africa</td>
<td>3.4</td>
<td>2.9</td>
</tr>
<tr>
<td>North America</td>
<td>13.5</td>
<td>0.3</td>
</tr>
<tr>
<td>Latin America</td>
<td>6.3</td>
<td>2.4</td>
</tr>
<tr>
<td>West Asia</td>
<td>3.5</td>
<td>1.7</td>
</tr>
<tr>
<td>South Asia</td>
<td>19.6</td>
<td>2.2</td>
</tr>
<tr>
<td>East Asia</td>
<td>38.3</td>
<td>1.3</td>
</tr>
<tr>
<td>Central Europe</td>
<td>2.7</td>
<td>1.8</td>
</tr>
<tr>
<td>West Europe</td>
<td>8.4</td>
<td>-0.3</td>
</tr>
<tr>
<td>Europe and C Asia</td>
<td>3.0</td>
<td>2.4</td>
</tr>
<tr>
<td>Oceania</td>
<td>1.4</td>
<td>4.9</td>
</tr>
</tbody>
</table>
Estimated Total Reactive Nitrogen Deposition from the Atmosphere (Wet and Dry)

Source: Galloway et al. 2004
The Nitrogen Cycle (simplified)

- **Ammonium NH₄**
 - N Fixation
 - Mineralization
 - Leaching

- **Organic Nitrogen**
 - Immobilization

- **Nitrate NO₃**
 - Denitrification
 - N₂ N₂O
 - Leaching

- **Nitrification**
Concentrations of Greenhouse Gases from 0 to 2005

- Red line: Carbon Dioxide (CO₂)
- Blue line: Methane (CH₄) x 25
- Black line: Nitrous Oxide (N₂O) x 298

Year

CO₂ (ppm), N₂O (ppb)

CH₄ (ppb)