To Plant, or Not to Plant?
Regulation of Invasive Plants in the Mid-Atlantic States

This work was supported by the National Socio-Environmental Synthesis Center (SESYNC) under funding received from the National Science Foundation DBI-1052875

Copyright 2016, by Lea R. Johnson, with license for use granted to the National Socio-Environmental Synthesis Center. This work is licensed for reuse under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. This license does not apply to figures as noted in the material, which are incorporated into the case under “fair use” guidelines. Images that are not the original work of the author are licensed for noncommercial reuse; the majority are available from the Wikimedia Commons repository.
To Plant or Not to Plant?
Regulation of Invasive Plants in the Mid-Atlantic States

PART 2:
Mapping Social-Ecological Systems
Social-Ecological Systems

Solving complex problems

• Complex systems can be difficult to understand
• Elements
• Relationships
• Boundaries
• Visualization
• Conceptual models
Social-Ecological Systems

Solving complex problems

• What are the impacts?
• Are there benefits?
• Who cares? Why do they care?
• What can be done?
• What should be done?
• Who should do it?
• Where will the money come from?
• Do solutions have drawbacks?
Social-Ecological Systems

Representing complex relationships

Sketch a diagram that illustrates your relationship(s) to the environment.

Social-Ecological Systems
Representing complex relationships

Example:
Integrated Social-Ecological System Model Template

http://dx.doi.org/10.1016/j.jenvman.2010.08.022

A diagram is worth a thousand words.
Integrated Social-Ecological System

- Land use
- Land cover
- Production
- Consumption
- Disposal

Interactions

External

- Political & Economic Conditions
- Bio-geo-physical Conditions

Social Patterns & Processes
- Demography
- Technology
- Economy
- Institutions
- Culture
- Information

Ecological Patterns & Processes
- Primary productivity
- Biodiversity
- Populations
- Nutrients
- Organic matter
- Disturbance

Systems have boundaries

External

Integrated Social-Ecological System

Social Patterns & Processes
- Demography
- Technology
- Economy
- Institutions
- Culture
- Information

External Political & Economic Conditions

Ecological Patterns & Processes
- Primary productivity
- Biodiversity
- Populations
- Nutrients
- Organic matter
- Disturbance

External Bio-geo-physical Conditions

Interactions
- Land use
- Land cover
- Production
- Consumption
- Disposal

Human Components

Ecological Components

Elements of systems interact

Integrated Social-Ecological System

Human Components
- Interactions
 - Land use
 - Land cover
 - Production
 - Consumption
 - Disposal

Ecological Components
- Primary productivity
- Biodiversity
- Populations
- Nutrients
- Organic matter
- Disturbance

External Political & Economic Conditions
- Social Patterns & Processes
 - Demography
 - Technology
 - Economy
 - Institutions
 - Culture
 - Information

External Bio-geo-physical Conditions
- Ecological Patterns & Processes
 - Primary productivity
 - Biodiversity
 - Populations
 - Nutrients
 - Organic matter
 - Disturbance

Strength and direction of interactions is variable

Integrated Social-Ecological System

Land use
Land cover
Production
Consumption
Disposal

Interactions

External Political & Economic Conditions

External Bio-geo-physical Conditions

Integrated Social-Ecological System

Social Patterns & Processes
Demography
Technology
Economy
Institutions
Culture
Information

Ecological Patterns & Processes
Primary productivity
Biodiversity
Populations
Nutrients
Organic matter
Disturbance

Human Components

Ecological Components

Interactions can be positive or negative

Mapping a Social-Ecological Problem System

We can use system mapping to understand complex social-ecological problems, where people may have multiple, conflicting, logic-based viewpoints.

- Natural resource management
- Environmental justice
- Genetically modified organisms
- Invasive species
Mapping a Social-Ecological System

We can use system maps to describe many kinds of systems that have social and ecological elements... like a student having pizza for lunch near campus.
Boundaries

Where is the system? Who is involved?

What is inside the system?
What is outside?

- University students
- Pizzerias near campus
- Food-producing region
- Exporting regions
- Transport networks
Stakeholders

Who is affected? Who gains or is harmed?

People with an interest or concern ("stake") in an issue
• Interests
• Concerns
• Values
• Different perspectives
• Common ground

Hungry students
Farmers
Pizzerias
Trucking company

Ecological Elements
How are biological and physical elements of the environment involved?

- Wheat plants
- Tomato plants
- Basil plants
- Olive trees
- Cows
- Energy inputs
- Pollinators
- Pesticides
- Agricultural runoff
- Fertilizers
- Soil
- Climate
Social Elements

How do institutions, power, and other social patterns and processes affect the system?

- Health and safety regulations
- Price of pizza
- Friends’ recommendations
- Cost of wheat flour
- Restaurant reviews
- Number of pizzerias
- Equity of service
- Grandma’s recipe
- Cultural expectations

Pizza System Map: **Interactions**

Arrows can be used to show **direction** and **effects** of interactions (increase, benefit/decrease, negative/neutral, both).

Mapping a Social-Ecological Problem System: Regulation of Invasive Plant Species

Oriental bittersweet (*Celastrus orbiculatus*)
Native to Asia
Invasive in eastern North America

Mapping a Social-Ecological Problem System

Activity: Using information from the article about kudzu, create a system map of the problem of kudzu’s expanding range in the United States.

1. **List system elements** on small pieces of paper
2. Arrange elements
 - Cluster similar elements
 - Leave room for lots of interactions
3. Show interactions between elements with arrows
 - Arrow direction = direction of influence
 - + or - = positive (increase, benefit) or negative (decrease, harm)
This model can be helpful for identifying system elements.

Integrated Social-Ecological System

Social Patterns & Processes
- Demography
- Technology
- Economy
- Institutions
- Culture
- Information

External Political & Economic Conditions

Ecological Patterns & Processes
- Primary productivity
- Biodiversity
- Populations
- Nutrients
- Organic matter
- Disturbance

External Bio-geo-physical Conditions

Human Components
- Land use
- Land cover
- Production
- Consumption
- Disposal

Ecological Components
- Primary productivity
- Biodiversity
- Populations
- Nutrients
- Organic matter
- Disturbance

Mapping a Social-Ecological Problem System

Problem System Elements

• Boundaries
 • Where is the problem? Who is affected?

• Stakeholders
 • Who is affected? Who gains or is harmed?

• Ecological elements of the problem
 • Effects of the problem on the biological and physical environment (+/-)
 • Effects of biological and physical environment on the problem (+/-)

• Social elements of the problem
 • How do institutions, power, and other social patterns and processes affect the problem?

• Interactions
 • Show interactions using arrows between elements in your system map.
 • Indicate whether interactions are positive (increase, benefit) or negative (decrease, harm) using (+/-).
Mapping a Social-Ecological Problem System

Activity: Using information from the article about kudzu, create a system map of the problem of kudzu’s expanding range in the United States.

1. List system elements on small pieces of paper
2. Arrange elements
 • Cluster similar elements
 • Leave room for interactions
3. Show interactions between elements with arrows
 • Arrow direction = direction of influence
 • + or - = positive (increase, benefit) or negative (decrease, harm)
Mapping a Social-Ecological Problem System

Activity: Using information from the article about kudzu, create a system map of the problem of kudzu’s expanding range in the United States.

1. List system elements on small pieces of paper

2. Arrange elements
 - Cluster similar elements
 - Leave room for lots of interactions

3. **Show interactions** between elements with arrows
 - Arrow direction = direction of influence
 - + or - = positive (increase, benefit) or negative (decrease, harm)