Networks of Networks: Sequence, Genomes and People

Owen White Director of Bioinformatics Institute for Genome Sciences University of Maryland Baltimore School of Medicine

NHGRI Genomic Timeline

A Series of Consortia

Biomedical Research is Large

- Millions of genome- equivalents
- 1,000s of centers
- Gargantuan cloud-based systems
- Abundant resources, e.g.:
 - HMP: \$120M
 - BRAIN Initiative \$180M

Data Topology is Distributed

• There is no one "genome repository"

– Imagine: PubMed \rightarrow 100s of libraries

- National Institutes of Health
 - 100s of Data Coordination Centers, 10⁵ labs, 10⁷ samples, # of files?
- Consider: 1,000s of hospitals
 - human sequencing as an assay

Distributed Data Implications

Puts a high premium on:

• Open access / data release

But this is very hard:

- Discoverability
- Combining datasets
- Reproducibility

NIH Common Fund Assets

		Incleon	ne	Inthe	AP MAP	First	000	bolc	mics	~	/	tems	Sur Sur	
۹.	10	76	\$ N	MY H	181 V	85/3	N N	eto N	0/5	В.	10	200	100	Mol
Clinical Data		X	X		X	X				MoTrPAC	X	Х		
Whole Genome/Exome Sequence		Х	X		х			Ρ		SPARC	X	х		
Transcriptomics	х	X	X	Р	х	X		Р	Ρ	HubMag		Х	X	
Histology Images					х					LINCS			X	Х
Radiology Images					х					4D Nucleome			X	х
Metatranscriptomics			X					Р		GTe)	4			х
Metaproteomics			X							KidsFirs	t			х
Marker Sequence Metagenomics			X					Ρ		HMP/iHMP				х
Microbial Reference Genomes			X					Р		Metabolomics				х
ChIPseq	х					X								
FISH	х			Р										
ATACseq	х			Р		X								
Hi-C	х					1								
ChIA-PET	х													
Proteomics			X	Р		X		Р	Р					
KINOMEscan						x								
Metabolomics			X	Р			X	Р						
Lipidomics				Р										
scDNAseq				Р										
Epigenomics			x	Р		x		Р						

	1	Huckeon	ne /	AP INS	P AR	dis First	NCS .	etaboli	oTRAC	AN	7		"Dome	ett	1 51
A. Clinical Data	/ W	x	X	~ `	X	x	1	4	1	/	D. MoTrPAC	X	x	10	/
Whole Genome/Exome Sequence		X	X		x			Р			SPARC	х	x		F
Transcriptomics	х	X	X	Р	x	X		Р	Р		HubMap		x	X	Г
Histology Images					х						LINCS			х	Γ
Radiology Images					х						4D Nucleome			х	
Metatranscriptomics			х					Ρ			GTeX				
Metaproteomics			X								KidsFirst				
Marker Sequence Metagenomics			х					Ρ			HMP/iHMP				
Microbial Reference Genomes			X					Ρ			Metabolomics				
ChIPseq	х					X									
FISH	х			Р											
ATACseq	х			Ρ		х									
Hi-C	х														
ChIA-PET	х														
Proteomics			X	Ρ		х		Ρ	Ρ						
KINOMEscan						X									
Metabolomics			X	Р			х	Ρ							
Lipidomics				P											
scDNAseq				P											
Epigenomics			X	P		X		Ρ							

Complementary Assets

- Same assets across sites
- Assets useful in combination across sites
- Sites host data associated with core entities::
 - human genes link between expression, epigenetic, and variant
- Data linked to concepts
 - Part of the body (e.g. "liver")
 - Patient information (e.g. body mass index, blood pressure)

Α.	10	Nucleon	ne h	AP INS	BRAR	as First	NCS ME	atabolic N	orres	2ARCO	В.	100	Organis	Cell	Molecut
Clinical Data		X	X		x	X		-		[MoTrPAC	х	X		
Whole Genome/Exome Sequence		X	X		x			Ρ			SPARC	х	X		
Transcriptomics	х	X	X	Р	X	X		Ρ	P		HubMap		X	X	
Histology Images					X						LINCS			X	х
Radiology Images					X						4D Nucleome			X	х

Problem Statement:

No common electronic specification for assets

No common specification for asset inventories

Complement No common transport system, "commerce"

- Assets useful in combination across sites
- Sites host data associated with core entities::
 - human genes link between expression, epigenetic, and variant
- Data linked to concepts
 - Part of the body (e.g. "liver")
 - Patient information (e.g. body mass index, blood pressure)

The Challenge: Distributed Data is a Fact of Life

Puts a high premium on:

• Open access / data release

But this is very hard:

- Discoverability
- Combining datasets
- Reproducibility

Unexpected surprise: These are significant <u>social issues</u> – technical agreement is nearly trivial

Genome Standards Have Always Been Built On Community Engagement

Community Members

identify initial set of key stakeholders develop plans to grow the community define contributor and leader roles

• Communication

project goals, solicit community input match goal to meet community needs, set up mechanism to field community requests

• Collaborative - Iterative - Development

reuse – recycle – repurpose Existing Ontologies evaluate ontology utility to data needs refine the ontology & establish update process

Challenges: Fairness and Trust

- Stakeholders have vested interest in the implementation (read: continued funding)
- Across consortia, no incentives to get in the room
- Prisoner's dilemma: no one group member can get buy-in from the rest of the group
- Not everyone needs to agree with a decision, but everyone does need to agree with the <u>process</u> for how to make decisions

ORGANIZATIONAL AND COMMUNICATION STRATEGIES

Elements of Success: Open Communication Tools

- Google drive
- Github
- Slack
- Groups.io
- Zoom
- Figshare

Goal: raise openness

Drivers of Success in a Consortium

(and drivers of primate behavior)

Fairness, trust, and "seeing" each other

Elements of Success: Communication Team

- Listening missions (physical travel)
- Do not talk about implementation, listen, take notes
- See what their life is like
- Determine incentives for participation
- Disseminate info
- Buffer between funder

Goal: raise trust, "see" each contributor, promote buy-in

Elements of Success: Working groups

• Vertical and horizontal communication (everyone is seen)

• Decisions should not be based on who is in the room, take notes, disseminate openly

Elements of Success: RFCs

Note: academics are notorious for NOT wanting standards Requests for Comments are:

- Open
- Iterative
- Binding
- Triangulates on consensus/community agreement
- Incremental engagement --> routine dissemination
- Basis of standards formation

Other elements of success

Increase accessibility

- Use open communication tools
- Record everything
- Disseminate everything
- Publish release cycles
- Instant messaging

Think: football coach

- Personalize contacts
- Liaison with mothership / let people do what they're good at

Promote: Everyone is seen, everyone contributes

• Examples: consortium-wide meetings, pairwise interactions, recording institutional memory, newsletters, social media

Other elements of success

Promote fairness, open methods devel

- Bake-offs, objective validation of methods
- Agile development \rightarrow frequent demos
- Github software registries

Training

- Empowerment
- Builds social networks
- Test early and often
- Understand usage patterns

Thanks