Resilience in Social-Ecological Systems: Models and Field Studies

Steve Carpenter Center for Limnology, University of Wisconsin-Madison Steve.Carpenter@wisc.edu

Topics

Brief history of resilience for social-ecological systems

Economics as a basis for SES modeling

Exploring the backloop

RAYS (Resilience Alliance Young Scholars) synthesis

Field-testing ideas about resilience

Summary

Topics

Brief history of resilience for social-ecological systems

Economics as a basis for SES modeling

Exploring the backloop

RAYS (Resilience Alliance Young Scholars) synthesis

Field-testing ideas about resilience

Summary

Resilience Network 1995-2000

Lance Gunderson

Resilience Alliance 2000 – present Stockholm Resilience Centre 2008 – present

Turbulent Change

Example: Forest Fire

K: Old trees, closed canopy, many dead trees & branches

 Ω : Fire

α : seed input, resprouts, etc.

r: young trees, open canopy, low fuel

2-Level Panarchy, as a Stommel Diagram

Cross-Scale Interaction in a Panarchy

Change in Organizations

Frances Westley leads workshop, Montevideo, Uruguay 2015

(on approach, process, product, question etc.)

People: engineers, implementers, organizers, team-builders

Experience: excitement, flow, high energy, rapid learning, progress

Trigger: Near peak production and efficiency; incremental progress.

People: engineers, managers. Innovators may be a bit bored.

Experience: satisfaction, pride of accomplishment; anxiety about growing stresses and loss of momentum.

Trigger: Discontinuation or breakdown of key processes.

People: Those who thrive on crisis are excited. Others may mourn losses.

Experience: anxiety, changing relationships, confusion, elation, identity crisis.

Trigger: Need for innovation. Meandering, loss of focus, experiments that may have few measurable outcomes for some time

People: Those who love to play with uncertainty are happy here; entrepreneurs and innovators

Experience: false starts, frustration, occasional breakthrough

Topics

Brief history of resilience for social-ecological systems

Economics as a basis for SES modeling

Exploring the backloop

RAYS (Resilience Alliance Young Scholars) synthesis

Field-testing ideas about resilience

Summary

Economic Analyses of Critical Transitions

What is the optimal level of pollutant loading for an ecosystem with a threshold?

Carpenter, Ludwig, Brock. 1999. Ecological Applications 9: 751-771.

Ludwig, Carpenter, Brock. 2003. Ecological Applications 13: 1135-1152.

Ludwig, Brock, Carpenter. 2005. Ecology & Society 10(2), article 13.

General pattern:

The Optimal Policy adds just enough pollutant to avoid crossing the threshold.

Mistakes will be made.

Backloops will happen.

Carpenter, Ludwig, Brock. 1999. Ecological Applications 9: 751-771.

Ludwig, Carpenter, Brock. 2003. Ecological Applications 13: 1135-1152.

Ludwig, Brock, Carpenter. 2005. Ecology & Society 10(2), article 13.

Social-Ecological Models of Ecosystem Management

"Agents" and regulator make decisions based on rational expectations & information available to them

Nonlinear ecosystem dynamics respond to human action and are measured imperfectly by agents & regulator.

Carpenter, S.R., W.A. Brock and P.C. Hanson. 1999. Ecological and social dynamics in simple models of ecosystem management. Conservation Ecology 3(2): 4. URL: http://www.consecol.org/vol3/iss2/art4

Topics

Brief history of resilience for social-ecological systems

Economics as a basis for SES modeling

Exploring the backloop

RAYS (Resilience Alliance Young Scholars) synthesis

Field-testing ideas about resilience

Summary

What to do in the Backloop?

Protect the experience needed for wisdom

Stimulate innovation in safe-to-fail experiments

Build capacity to adapt to change

Expand and communicate understanding of change

Scenarios

are plausible stories about how the future of a social-ecological system might unfold from existing patterns, new factors, and alternative human choices.

(Paul Raskin, 2005, in *Ecosystems*)

[Plot is]

"the gradual perturbation of an unstable homeostatic system and its catastrophic restoration to a new and complexified equilibrium".

(John Barth, quoted by Jennifer Boylan, NYTBR 10 April 2016)

Northern Highland Lake District, Wisconsin

Four Cycles in the Northern Highland Adaptive Management Game

Two Big Attempts to

Integrate Science and Stakeholders for Ecosystem Management

Case Studies in Applied Resilience 2006 Walker & Salt

Millenium Ecosystem Assessment Scenarios 2005 Carpenter and 96 others

Topics

Brief history of resilience for social-ecological systems

Economics as a basis for SES modeling

Exploring the backloop

RAYS (Resilience Alliance Young Scholars) synthesis

Field-testing ideas about resilience

Summary

New Synthesis by Resilience Alliance Young Scholars (RAYS) group

Cambridge Univ. Press, 2015

Also see: Biggs et al. 2012. Toward principles for enhancing the resilience of ecosystem services. Ann. Rev. Env. Resour. 37: 421-448.

Maintain Heterogeneity

<u>The point</u>: Different types of ecosystems, cultures, institutions and knowledge systems provide options for responding to change

Heterogeneity is guaranteed to improve resilience if (1) there is a 'central limit' effect that dampens fluctuations and (2) the improvement in resilience diminishes with more of each type.*

How to do it: Conserve heterogeneity; Focus less on maximum efficiency even if it costs more

Manage Connectivity

<u>The point</u>: Connectivity aids recovery after disturbance, but highly connected systems can spread disturbances faster.

How to do it: Map nodes and connections; Know where to intervene if connectivity needs to be built or broken.

Manage Slow Variables

<u>The point</u>: Gradual drift in slow variables can lead to regime shifts that are long-lasting and expensive to reverse.

How to do it: Monitor slow variables and use governance systems that respond to monitoring information. Strengthen feedbacks that maintain desirable system structure.

Foster Complex Adaptive Systems Thinking

<u>The point</u>: In order to maintain natural resources we need to understand the complex interactions that occur between people and ecosystems.

<u>How to do it</u>: Employ a systems perspective; Investigate critical thresholds; match institutions to key ecological processes; address barriers to cognitive change; expect the unexpected.

Encourage Learning

<u>The point</u>: Knowledge is always partial, and the system is always changing so the value of existing information decays. Efforts to manage therefore require continual experimentation and learning.

How to do it: Monitor, and use the data to understand change; engage diverse participants and seek opportunities to share knowledge; seek opportunities for adaptive management.

Broaden Participation

<u>The point</u>: Relationships and trust among all key actors are needed to establish legitimacy of knowledge and authority in collective problem-solving processes.

<u>How to do it</u>: Obtain sufficient resources for wide participation; get the right people; recruit inspired and motivated leaders; clarify goals and expectations; deal with power issues and conflicts. polycentric \rightarrow multiple institutions interact to make & enforce rules

<u>The point</u>: Emerging problems could be addressed by the right institution at the right scale

How to do it: No simple guidelines

<u>Barriers</u>: Costs of negotiating trade-offs among multiple institutions; it is harder to get agreement for adaptive management; special interests seek out the level of governance most friendly to their narrow goals.

Topics

Brief history of resilience for social-ecological systems

Economics as a basis for SES modeling

Exploring the backloop

RAYS (Resilience Alliance Young Scholars) synthesis

Field-testing ideas about resilience

Summary

How to Learn about Ecosystems

Carpenter, S.R. 1998. The need for large-scale experiments to assess and predict the response of ecosystems to perturbation. pp. 287-312 in M.L. Pace and P.M. Groffman (eds.), Successes, Limitations and Frontiers in Ecosystem Science. Springer-Verlag, N.Y.

To find out what happens to a system when you interfere with it you have to interfere with it (not just passively observe it).

— George E.P. Box Use and Abuse of Regression (1966), 629.

Assessing the Future of the Yahara Watershed (Madison Wisconsin)

Urbanizing agricultural region 1389 km²; 372,000 people; 5 lakes Remarkable long-term database (see http://lter.limnology.wisc.edu)

Challenges to resilience:

More variable precipitation, warming Phosphorus pollution of soils and waters Toxic algae blooms More frequent flooding Rising demand for land and water resources

Topics

Brief history of resilience for social-ecological systems

Economics as a basis for SES modeling

Exploring the backloop

RAYS (Resilience Alliance Young Scholars) synthesis

Field-testing ideas about resilience

Summary

Summary

Routine expansion vs turbulent change is a key distinction

Both occur at the same time, at different scales

The backloop is poorly understood and highly influential

Models, games, and scenarios accelerate thinking about backloops and long-term change

Engagement of researchers with people in the SES is essential

The RAYS' Seven Principles provide a framework for organizing social-ecological research that engages with stakeholders