The increasing global environmental consequences of a weakening US–China crop trade relationship

Abstract

The consideration of tariffs on China’s imports of US agricultural products has focused on economic impacts, while the environmental consequences have received less attention. Here we use a global computable general equilibrium model to evaluate long-term crop portfolio changes induced by China’s retaliatory agricultural tariffs and thereby assess the environmental stresses imposed by different crop production portfolios based on region-specific and crop-specific databases. We show that China’s tariffs cause unintended increases in nitrogen and phosphorus pollution and blue water extraction in the United States as farmers shift from soybeans to more pollution-causing crops. If diverted to Brazil, China’s soybean demands would reduce Brazilian stresses of nitrogen pollution and water use through crop portfolio changes, but may add additional pressures on phosphorus pollution and deforestation. On a global scale, trade policies could help to reduce nutrient pollution and water source depletion by promoting crop production where it is most efficient in terms of nutrient and water use.

Publication Type
Journal Article
Authors
Guolin Yao
Xin Zhang, University of Maryland Center for Environmental Science
Eric A. Davidson
Farzad Taheripour
Date
Journal
Nature Food
Share

Related Content